

Многофазный волноводный уровнемер Genesis

Описание

Первый в мире многофазный волноводный уровнемер Genesis предназначен для точного измерения уровней границ раздела многофазных сред методом волноводной рефлектометрии с временным разрешением (PBP).

Особенности

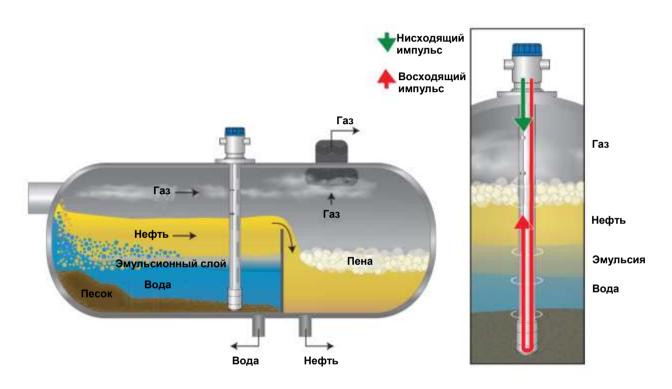
- Уникальный многофазный уровнемер питается напряжением 24 В постоянного тока и позволяет измерить общий уровень жидкости и уровни эмульсионного слоя, воды и отложений
- На результаты измерений не влияет изменение диэлектрической проницаемости и плотности среды
- ◆ Четыре выходных сигналов 4...20 мА, один из них с цифровым выходом НАRT
- ◆ 4-кнопочная клавиатура и графический ЖК дисплей обеспечивают удобство визуализации параметров настройки и рефлектограмм
- ◆ Калибровка не требует изменения уровня жидкости
- ◆ Конструкция зонда рассчитана на среды с температурой до +200°С и давлением до7 МПа
- ◆ Выносной блок электроники может устанавливаться на расстоянии до 30 м от зонда
- ♦ Отсутствие движущихся частей

Области применения

Среды: Жидкости и суспензии; различные вещества: от углеводородов до сред на водной основе (диэлектрическая проницаемость ε_r от 1,4 до100)

Резервуары: Большинство технологических аппаратов или емкостей для обработки, разделения или хранения жидкостей, температура и давление в которых соответствуют характеристикам устройства (температура до +200°Си давление до 7МПа)

Специальные приложения: Любые задачи, возникающие при измерении уровня границ раздела сред, включая наличие плотных, динамически меняющихся слоев эмульсии, в технологических процессах, включающих образование пены, волнение поверхности, высокие скорости наполнения/опорожнения в широких диапазонах диэлектрической проницаемости или плотности



Принцип работы

Genesis — это многофазный уровнемер, основанный на технологии волноводной рефлектометрии с временным разрешением (РВР). Устройство генерирует электрические импульсы, которые распространяются по зонду. Когда нисходящий импульс достигает границы среды с диэлектрической постоянной выше, чем у воздуха (ϵ_r = 1), он частично отражается. Время, за которое импульс достигает границы, измеряется схемой с высоким разрешением, что обеспечивает точное определение уровня жидкости. Амплитуда отраженного импульса зависит от диэлектрической постоянной среды: чем она выше, тем сильнее отражение.

Обычно в волноводных радарных уровнемерах высокочастотные импульсы передаются сверху вниз и служат для определения верхнего (общего) уровня жидкости. В то же время Genesis посылает и восходящие импульсы для детектирования других границ раздела, которые могут присутствовать в резервуаре, включая верхний уровень эмульсионного слоя и его нижний уровень (уровень воды), а также уровень осадка.

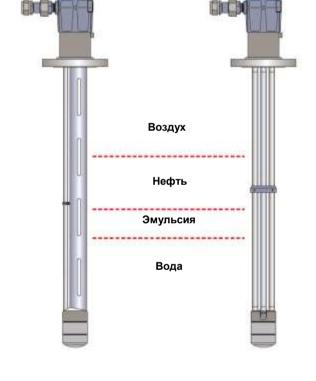
Зонды

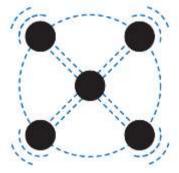

Коаксиальный зонд PBP наиболее эффективен, и такая конструкция должна рассматриваться при ее выборе как основной вариант для любого приложения. Как и в случае коаксиального кабеля, высокочастотные импульсы распространяются по коаксиальному зонду практически без потерь.

Электромагнитное поле, возникающее между внутренним стержнем и наружной трубкой, полностью сосредоточено внутри зонда и однородно по всей его длине. Это означает, что зонд не чувствителен к каким бы то ни было воздействиям со стороны других объектов, размещенных в емкости, а значит его можно установить в любом месте, где имеется достаточное свободное пространство.

Эффективность и чувствительность коаксиальных зондов обеспечивает высокий уровень сигнала даже в средах с очень низкой диэлектрической проницаемостью (ϵ_r >1,4). Однако чувствительность такой "закрытой" конструкции повышает вероятность ошибок в условиях образования пленок и отложений на поверхности зонда. Как и в большинстве методов определения уровня, выбор чувствительного элемента – это ключевой аспект оптимального выбора средства измерения.

Увеличенный коаксиальный зонд


Стандартный коаксиальный зонд Genesis большого диаметра пригоден для большинства задач с чистыми средами вязкостью до 2,000сП (мПа*с).


Распространение сигнала в коаксиальном зонде

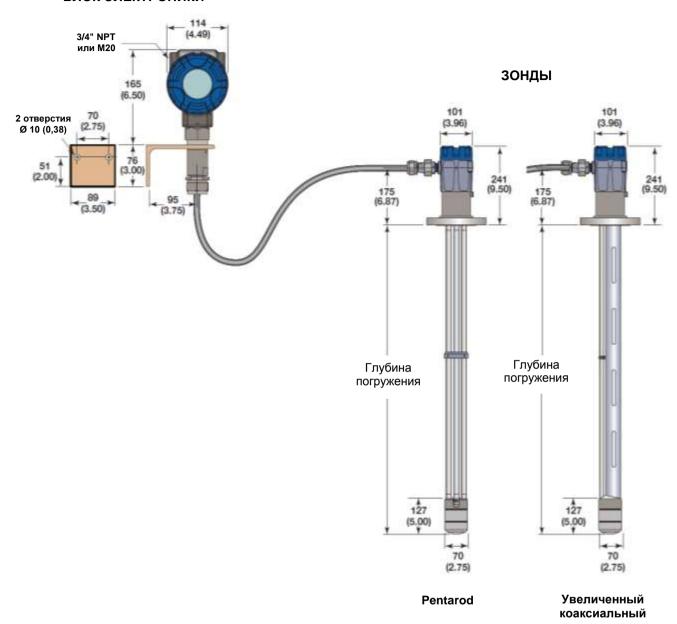
Зонд Pentarod с 5-ю волноводами

Конструкция зонда Pentarod включает активный центральный волновод С фторполимерным покрытием, окруженный четырьмя опорными волноводами. Этот зонд также позволяет производить измерения с высокой точностью, но при этом он существенно менее подвержен налипанию и образованию перемычек между активным волноводом и наружной трубкой или опорными волноводами. Максимальная вязкость -10,000c∏ (мПа*с).

Коаксиальный зонд и зонд с 5-ю волноводами

Распространение сигнала в зонде Pentarod

Дополнительное соединение для промывки


Если характер среды способствует образованию отложений на зонде, эффективность технического обслуживания можно существенно улучшить, используя зонд с дополнительным узлом промывки. Этот узел представляет собой металлический патрубок с отверстием, приваренный к зонду. Эта опция доступна для обоих вариантов конструкции. Порт позволяет промывать внутренние поверхности зонда в ходе профилактического обслуживания.

Размеры

миллиметры (дюймы)

БЛОК ЭЛЕКТРОНИКИ

Технические характеристики

Измеряемые величины	Верхний уровень жидкости (уровень нефти), верхний уровень эмульсии, нижний уровень эмульсии (уровень воды), уровень осадка
Диапазон измерения уровней	От 600 до 6100 мм
Погрешность измерения уровней	Зависит от приложения
Диэлектрическая проницаемость среды, ϵ_r	от 1,4 до 100
Выходной сигнал	Четыре аналоговых выхода 420 мА, включая один с протоколом HART
Время отклика	Около 15 с
Клавиатура	4-кнопочная, навигация в меню, ввод данных
Дисплей	Графический жидкокристаллический
Питание	24 В постоянного тока (±10 %)
Корпус основного блока электроники	IP67 / литой алюминий A413 (<0,6 % меди) / 2,75 кг; по дополнительному заказу нержавеющая сталь 316, 304 / 5,7 кг
Корпус блока электроники на зонде	IP67 / литой алюминий A413 (<0,6 % меди) / 1,4 кг; по дополнительному заказу нержавеющая сталь 316, 304 / 3,2 кг
Взрывозащита	Взрывонепроницаемая оболочка (основной блок электроники), искробезопасные цепи (основной блок электроники или блок на зонде)
Кабельный ввод	3/4" NPT или M20 x 1,5
Диапазон температур окружающей среды	От -40°C до +70°C; изображение на ЖК-дисплее видимо от -20 до +70°C
Диапазон температур рабочей среды	От -40°C до +200°C
Максимальное давление рабочей среды	7 МПа (при 20°C)
Температура хранения	От -45 до +85°C
Влажность	От 0 до 99 %, без конденсации

Информация для заказа

Стандартная поставка:

- ♦ Выносной блок электроники до 30м от зонда
- Блок электроники алюминий или нержавеющая сталь
- ♦ Зонд (сконфигурированный под конкретную рабочую среду)

По дополнительному заказу:

- ♦ Специальное исполнение элементов уровнемера
- ♦ Чертежи на уровнемер
- Табличка из нержавеющей стали с обозначением позиции по проекту

Для получения дополнительной информации просим обращаться: