

Многофункциональный искробезопасный калибратор и коммуникатор Beamex MC6-Ex, исполнение (-R)

Назначение

Многофункциональный документирующий искробезопасный калибратор и коммуникатор Beamex MC6-Ex, исполнение (-R) предназначен для поверки и калибровки в полевых или лабораторных условиях, в том числе и во взрывоопасных зонах, стрелочных и цифровых преобразователей приборов. давления. уровня перепада давления, расхода, температуры, имеющих сигналы P, t, U, I, R, f, протоколы импульсы, а также HART, **FOUNDATION Fieldbus H1, Profibus PA.**

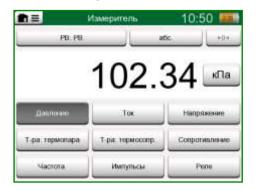
Основные функции

- Измерение давления (40 единиц измерения)
- ◆ Измерение и генерирование постоянного тока, напряжения, частотных и импульсных сигналов
- Тестирование реле
- Встроенный искробезопасный источник питания токовой петли
- ◆ Измерение (2 канала одновременно) и имитация сопротивления или сигналов термометров сопротивления
- ◆ Измерение (2 канала одновременно) и имитация сигналов термопар
- ◆ Компенсация температуры холодного спая термопар: внутренняя, внешняя, ручная
- ◆ Калибровка/поверка средств измерений автоматически или вручную
- ◆ Хранение данных о приборах, процедурах, результатах калибровок, возможность передачи во внешнее ПО СМХ
- ♦ Полнофункциональный коммуникатор HART, FOUNDATION Fieldbus, Profibus PA

Дополнительные возможности

- Масштабирование любых измерений
- Звуковая сигнализация о достижении верхних, нижних границ параметра и скорости его изменения
- ♦ Тест утечки / стабильности
- Цифровые фильтры измеряемых сигналов
- ◆ Выбор разрешения индикации (-3 ...+1 разряд)
- ◆ Отображение на дисплее в основном окне до 4 дополнительных параметров
- Программируемые функции наклонов и ступеней при генерировании сигналов
- Программируемые кнопки быстрого ввода значений
- Удобная подстройка генерируемой величины (в каждом разряде)
- Полная информация на дисплее о выбранной величине
- Создание списка пользователей, новых единиц измерения, а также градуировок платиновых термометров сопротивления

Ех-маркировка 0Ех іа ІІС Т4 Ga X


Уникальные особенности

- ◆ Переносной документирующий искробезопасный калибратор давления и электрических сигналов, а также коммуникатор устройств HART, FOUNDATION Fieldbus, Profibus и даталоггер в едином корпусе
- Установка до 3-х внутренних и подключение внешних модулей давления
- ◆ Применение калибратора и возможность замены аккумулятора в опасной зоне
- ◆ Цветной сенсорный дисплей с подсветкой и мембранной клавиатурой, возможность работать в рукавицах
- Самый большой выбор типов термопар и термометров сопротивления по ГОСТ, IEC, DIN для МТШ-90 и МПТШ-68
- Дружественный многооконный интерфейс на русском языке с мнемосхемами подключения различных приборов
- Автоматизация процедур калибровки в полевых и лабораторных условиях
- Многоканальный даталоггер с возможностью хранения данных и их передачи в ПК
- Пыле- и влагонепроницаемый корпус (IP65)
- ♦ 3 года гарантии

Программное обеспечение

ПО СМХ основано на системе управления данных калибровок (поверок) СИ предприятия, выполненных помощью калибраторов Веатех или других эталонных средств. В сочетании с ПО эти калибраторы полностью соответствуют требованиям стандартов ИСО 9000 в части проведения, документирования и результатов хранения калибровок.

Режимы работы

Измеритель

Этот режим предназначен для измерения одной из величин:


- ◆ Давление (изб, абс., дифф., барометрическое), 40 единиц измерения, внутренние и внешние модули давления
- \bullet Напряжение (± 500 мВ и ± 30 В постоянного тока)
- ♦ Toκ (±100 мA)
- ◆ Сопротивление (0...4000 Ом)
- ◆ Частота (0...50 кГц)
- ◆ Импульсы (0...10⁷)
- ◆ Сигналы термопар и термометров сопротивления (в °С)
- ◆ Состояние контактов реле (режимы «сухой» / «под напряжением»)

Калибратор

Этот режим предназначен для калибровки/поверки различных средств измерения (СИ) вручную или измерений сигналов по двум каналам одновременно. Обычно один канал калибратора используется для измерения или задания входного сигнала СИ, а второй — для измерения или приема по цифровому протоколу его выходного сигнала.

Встроенный искробезопасный источник питания петли, в том числе, при измерении и генерировании тока.

Документирующий калибратор (опция)

Этот режим предназначен для калибровки/поверки СИ вручную или автоматически и сохранения результатов во внутреннюю память. Для этого необходимо предварительно создать описание СИ и процедуру его калибровки, которые также могут быть загружены из внешнего ПО **СМХ** на ПК (или переданы в ПО из калибратора). По окончании калибровки можно передать ее результаты в ПО на ПК для хранения, а также распечатки протокола.

Даталоггер (опция)

Даталоггер предназначен для регистрации измерений по одному или нескольким (максимально по 9-ти) каналам в течение заданного интервала времени с возможностью сохранения накопленных данных во внутренней памяти калибратора. Данные можно впоследствии просматривать, а также передать во внешнее ПО **Datalog Viewer** на ПК для хранения, распечатки или экспорта в другие приложения.

Выбор параметров для каналов регистрации определяется конфигурацией конкретного калибратора.

Коммуникатор (опция)

Полный мульти-шинный коммуникатор для **HART**, **FOUNDATION Fieldbus H1** или **Profibus PA**. Использование цифрового выходного сигнала позволяет исключить дополнительные измерения аналоговых сигналов (и вносимые ими погрешности) при передаче данных в АСУТП. Калибратор позволяет не только выполнять поверку таких СИ, но и конфигурировать, а также настраивать их для уменьшения погрешности.

Встроенный искробезопасный источник питания цифровых шин.

Технические характеристики

Дисплей	Сенсорный TFT, 5.7" (640 x 480 пиксел) с подсветкой	
Клавиатура	Мембранная	
Питание	Аккумулятор (NiMh, 4200 мАч, 9,6 B), 3У ~100240 B/=15 B	
Время работы от аккумулятора	48 часов	
Время заряда аккумулятора	68 часов (от 0 до 100%)	
Ех-маркировка	0Ex ia IIC T4 Ga X (Ta = -10+50 °C)	
Защита от пыли и влаги, ударов	IP65, падение с высоты 1 м	
Условия эксплуатации/хранения	-10+50 °C / -20+60 °C, 080 % относительной влажности	
Габариты (Д х Ш х В); масса нетто	207 x 231 x 80 мм; 2,52,9 кг	
Интерфейсы	1 x USB A, 1 x USB B	

Измерение электрических сигналов

Диапазон Разрешение		Пределы допускаемой основной погрешности *	
-510+510 мВ ¹⁾	0,001 мВ	± (0,007 % от показания + 4 мкВ)	
(TC1, TC2)		, ,	
-500+500 мВ ²⁾ (IN)	0,001 мВ	± (0,006 % от показания + 5 мкВ)	
-30,3+30,3 B ²⁾ (IN) 0,01 /0,1 MB		± (0,006 % от показания + 0,25 мВ)	
±25 мА ³⁾ (IN)	0,0001 мА	± (0,01 % от показания + 1 мкA)	
±101 мА ³⁾ (IN)	0,001 мА	± (0,01 % от показания + 1 мкA)	
0100 Ом (R1, R2)	0,001 Ом	±6 мОм	
100<110 Ом (R1, R2) 0,001 Ом		± 0,006 % от показания	
110<150 Ом (R1, R2) 0,001 Ом		± 0,007 % от показания	
150<300 Ом (R1, R2)		± 0,008 % от показания	
300<400 Ом (R1, R2) 0,001 Ом		± 0,009 % от показания	
4004040 Ом (R1, R2) 0,01 Ом		± (0,015 % от показания + 12 мОм)	

Генерирование электрических сигналов

Диапазон Разрешение		Пределы допускаемой основной погрешности *
-500+500 мВ ⁴⁾ (ТС1)	0,001 мВ	± (0,007 % от показания + 4 мкВ)
-1,5+10,5 B ⁵⁾ (OUT)	0,01 мВ	± (0,007 % от показания + 0,1 мВ)
025 мА ⁶⁾ (OUT)	0,0001 мА	± (0,01 % от показания + 1 мкA)
0<100 Ом (R1) ⁷⁾	0,001 Ом	± 20 мОм
100<400 Ом (R1) ⁷⁾	0,001 Ом	± (0,01 % от показания + 10 мОм)
4004000 Ом (R1) ⁷	0,01 Ом	± (0,015 % от показания + 20 мОм)

Измерение (IN) 8) / генерирование (OUT) 9) частотных сигналов

Диапазон	Разрешение	Пределы допускаемой основной погрешности *
0,0027/0,0005<0,5 Гц	0,000001 Гц	± (0,002 % от показания + 0,000002 Гц)
0,5<5 Гц	0,00001 Гц	± (0,002 % от показания + 0,00002 Гц)
5<50 Гц	0,0001 Гц	± (0,002 % от показания + 0,0002 Гц)
50<500 Гц	0,001 Гц	± (0,002 % от показания + 0,002 Гц)
500<5000 / 3000 Гц	0,01 Гц	±(0,002 % от показания + 0,02 Гц)
5000<51000 / - Гц	0,1 Гц	±(0,002 % от показания + 0,2 Гц)
09999999 имп	1 имп	-

^{*} Включая нелинейность, гистерезис, воспроизводимость и дрейф за 1 год при температуре -10...50 °C

коэффициент заполнения: 50% (10000 Гц), 40...60% (3000 Гц), 10...90% (100 Гц), 1...99% (10 Гц)

Встроенный источник питания токовой петли:

при измерении тока (**IN**) =19 B \pm 10% (12 B, макс. 50 мA; 12 B, макс. 25 мА для FF/PA)

 $R_{\text{вых}}$ 130 Ом для мА и FF/PA, $R_{\text{вых}}$ 260 Ом для HART

при генерировании тока (OUT) = 9 В при 1 мА; = 6 В при 20 мА

Внешний источник питания токовой петли: не более =30 В

¹⁾ R_{BX} >10 Mom ²⁾ R_{BX} >1 Mom ³⁾ R_{BX} <10 Om ⁴⁾ I_{MAKC} = 1 MA ⁵⁾ I_{MAKC} = 1 MA ⁶⁾ R_{HAPD} <300 Om (20 MA)

 $^{^{7)}}$ I_{макс} 2 мА (0...200Ом), 1 мА (200...400 Ом), 0,5 мА (400...2000 Ом), 0,25 мА (2000...4000 Ом); I_{exc} x R_{sim} <1,0 В $^{8)}$ R_{вх} 115 кОм, минимальная амплитуда сигнала: 1 В (<10 кГц), 1,2 В (10...50 кГц);

уровень запуска: сухой контакт 1 В, контакт под напряжением -1...14 В

⁹⁾ І_{макс}=1 мА; амплитуда сигнала 0...10,5 В_{п-п} (форма сигнала – прямоугольная положительная); амплитуда сигнала 0...4 В_{п-п} (форма сигнала — прямоугольная симметричная);

Измерение (R1, R2) и имитация (R1) сигналов термометров сопротивления

Тип	Диапазон, °С	Пределы допускаемой основной погрешности * (измерение), °C	Пределы допускаемой основной погрешности * (имитация), °C
50∏	-200<270	± 0,03	± 0,11
(Pt50 α385) 1) 2)	270850	± 0,012 % от показания	\pm (0,015 % от показания + 0,11)
100∏	-200<0	± 0,015	$\pm0,\!05$
(Pt100 α385) 1) 2)	0850	\pm (0,012 % от показания + 0,015)	$\pm(0,\!014\%$ от показания + 0,05)
200∏	-200<-80	± 0,01	± 0,025
(Pt200 α385) 1) 2)	-80<0	± 0,02	$\pm0,\!035$
,	0<260	\pm (0,012 % от показания + 0,02)	\pm (0,011 % от показания + 0,04)
	260850	\pm (0,02 % от показания + 0,045)	\pm (0,02 % от показания + 0,06)
400∏	-200<-100	± 0,01	$\pm0,\!015$
(Pt400 α385) 1) 2)	-100<0	± 0,02	$\pm0,\!03$
	0850	± (0,019 % от показания + 0,045)	\pm (0,019 % от показания + 0,05)
500Π (1) 2)	-200<-120	± 0,01	$\pm0,\!015$
(Pt500 α385)	-120<-50	± 0,02	$\pm0,\!025$
(500Π α391-06) ²⁾	-50<0	± 0,045	± 0,05
,	0850	\pm (0,019 % от показания + 0,045)	\pm (0,019 % от показания + 0,05)
1000П 1) 2)	-200<-150	± 0,008	± 0,011
(Pt1000 α385)	-150<-50	± 0,031	$\pm0,\!035$
(1000Π α391-06) ²⁾	-50<0	± 0,041	± 0,043
	0850	\pm (0,019 % от показания + 0,041)	\pm (0,019 % от показания + 0,043)
50Π 1) 2)	-200<0	± 0,03	± 0,11 (для –200… <+270 °C)
(50Π α391) (50Π α391-06) (50Π α391-06)	0850	± (0,01 % от показания + 0,03)	± (0,015 % от показания + 0,073) (для 270…850 °C)
,	>8501100 (FOCT 6651-94)	$\pm (0,025~\%$ от показания + 0,03)	± (0,017 % от показания + 0,065)
100П	-200<0	± 0,015	± 0,05
$(10011 \alpha 391)$	0850	\pm (0,013 % от показания + 0,015)	\pm (0,014 % от показания + 0,05)
(100Π α391-06) ²⁾	>8501100 (FOCT 6651-94)	± (0,025 % от показания + 0,03)	± (0,027 % от показания + 0,04)
50M (50M α428)	-200+200	± 0,030	±0,098
(50M α428-06) ²⁾	-180+200	± 0,029	±0,094
100M	-200<0	± 0,015	± 0,049
(100M α428) 1) 2)	0+200	± (0,012 % от показания + 0,015)	± (0,009 % от показания + 0,049)
$(100 \text{M} \alpha 428-06)^{2}$	-180<0	± 0,015	± 0,047
(100W 4420-00)	0+200	± (0,012 % от показания + 0,015)	± (0,01 % от показания + 0,047)
50M	-50<0	± 0,029	± 0,094
(50M α426) 1)	0200	_ 5,5_5	_ 5,55
100M	-50<0	± 0,015	± 0,047
$(100M \alpha 426)^{1)}$	0+200	\pm (0,012 % от показания + 0,015)	\pm (0,01 % от показания + 0,047)
100H	-60<0	± 0,013	± 0,043
(100H α617) 1) 2)	0+180	± (0,007 % показания + 0,013)	
гр.21	-200<0	± 0,033	± 0,12 (для –200… <+300 °C)
(46Π α391) ³⁾	0+650	± (0,008 % от показания + 0,033)	± (0,015 % от показания + 0,075) (для 300…650 °C)
гр.23	-50<0	± 0,027	± 0,089
$(53M \alpha 426)^{3)}$	0+200		

Разрешение для всех типов термометров сопротивления по умолчанию: 0,001°C

 I_{Harp} : 2 MA (0...200 OM), 1 MA (200...400 OM), 0,5 MA (400...2000 OM), 0,25 MA (2000...4000 OM), I_{Harp} x R_{CMM} < 1 B $^{1)}$ MПТШ-68 (ГОСТ 6651-84) $^{2)}$ МТШ-90 (ГОСТ 6651-94, ГОСТ Р 8.625-2006, ГОСТ 6651-2009) $^{3)}$ ГОСТ 6651-78

^{*} Включая нелинейность, гистерезис, воспроизводимость и дрейф за 1 год при температуре -10...50°C для 4-х проводной схемы, для 3-х проводной добавить 13,5 мОм

I_{изм}: пульсирующий в обоих направлениях 0,2 мА

Измерение/имитация (ТС1), измерение (ТС2) сигналов термопар

Тип	Диапазон, °С	Пределы допускаемой основной погрешности*, °С (измерение, имитация)	
ПР (B) ^{1) 2)}	0<200	± (0,007 % от показания + 4) мкВ	
	200<500	± 2,0	
	500<800	± 0,8	
	8001820	± 0,5	
ПП (R) ^{1) 2)}	- 50<0	± 1,0	
	0<150	± 0,7	
	150<400	± 0,45	
	4001768	± 0,4	
ПП (S) ^{1) 2)}	- 50<0	± 0,9	
	0<100	± 0,7	
	100<300	± 0,55	
	3001768	± 0,45	
XA(K) 1) 2)	-270<-200	± (0,007 % от абс. показания + 4) мкВ	
	-200<0	± (0,1 % от абс. показания + 0,1)	
	0<1000	\pm (0,007 % от показания + 0,1)	
	10001372	\pm 0,017 % от показания	
XK(E) 1) 2)	-270<-200	± (0,007 % от абс. показания + 4) мкВ	
	-200<0	± (0,06 % от абс. показания + 0,07)	
	01000	± (0,005 % от показания + 0,07)	
MK(T) 1) 2)	-270<-200	± (0,007 % от абс. показания + 4) мкВ	
-200<0		± (0,1 % от абс. показания + 0,1)	
	0400	± 0,1	
ЖК(J) ^{1) 2)}	-210<-200	± (0,007 % от абс. показания + 4) мкВ	
	-200<0	± (0,06 % от абс. показания + 0,08)	
	01200	± (0,006 % от показания + 0,08)	
HH(N) 1) 2)	-270<-200	± (0,007 % от абс. показания + 4) мкВ	
	-200<-100	\pm 0,2 % от абс. показания	
	-100<0	± (0,05 % от абс. показания + 0,15)	
	0<800	± 0,15	
	8001300	± (0,01 % от показания + 0,07)	
U 1)	-200<0	± (0,07 % от абс. показания + 0,1)	
	0600	± 0,1	
L 1)	-200<0	± (0,04 % от абс. показания + 0,08)	
	0900	± (0,005 % от показания + 0,08)	
XK(L) 1) 2)	-200<0	± (0,052% от абс. показания + 0,07)	
	0 <380	± 0,07	
	380800	± (0,008 % от показания + 0,04)	
BP(A)-1 1) 2)	0<300	± (0,023 % от показания + 0,33)	
	300<1500	± (0,014 % от показания + 0,22)	
	15002500	± (0,039 % от показания + 0,15)	

Разрешение для всех типов термопар по умолчанию: 0,01 °C;

Автоматическая компенсация температуры холодного спая термопар

Диапазон компенсации, °С	Пределы допускаемой основной погрешности *, °С	
-10+50	± 0,15	

^{*} Включая нелинейность, гистерезис, воспроизводимость и дрейф за 1 год при температуре 15...35°C, температурный коэффициент вне 15...35 °C ± 0.005 °C/°C

^{*} Включая нелинейность, гистерезис, воспроизводимость и дрейф за 1 год при температуре -10...50°C

¹⁾ МПТШ-68 (ГОСТ 3044-84, ГОСТ Р 50431-92, МЭК 584-1-77)

 $^{^{2)}}$ МТШ-90 (ГОСТ Р 8.585 – 2001)

Внутренние и внешние модули измерения давления

Внутренние модули	Внешние модули	Диапазон ¹⁾	Погрешность ²⁾ (±) МПИ 12 месяцев ³⁾
PB-Ex	EXTB-IS	70120 кПа абс	0,03 кПа
P10mD-Ex	EXT10mD-IS	±1 кПа дифф	0,05 % Д
P100m-Ex	EXT100m-IS	010 кПа	0,0125 % П + 0,015 % ВП
P400mC-Ex	EXT400mC-IS	±40 кПа	0,0125 % П + 0,010 % ВП
P1C-Ex	EXT1C-IS	±100 кПа	0,0125 % П + 0,007 % ВП
P2C-Ex	EXT2C-IS	-100…200 кПа	0,0100 % П + 0,005 % ВП
P6C-Ex	EXT6C-IS	-100…600 кПа	0,0100 % П + 0,005 % ВП
P20C-Ex	EXT20C-IS	-1002000 кПа	0,0100 % П + 0,005 % ВП
P60-Ex	EXT60-IS	06 МПа	0,0125 % П + 0,005 % ВП
P100-Ex	EXT100-IS	010 МПа	0,0125 % П + 0,005 % ВП
P160-Ex	EXT160-IS	016 МПа	0,0125 % П + 0,005 % ВП
	EXT250-IS	025 МПа	0,0125 % П + 0,007 % ВП
	EXT600-IS	060 МПа	0,0100 % П + 0,007 % ВП
	EXT1000-IS	0100 МПа	0,0100 % П + 0,007 % ВП

П - показание

Информация для заказа

Стандартная поставка:

- Калибратор
- ♦ Блок аккумуляторов и зарядное устройство
- ♦ Кабель USB и комплект контрольных проводов
- Руководство по эксплуатации на русском языке
- ♦ Копия сертификата соответствия ТР ЕАЭС

По дополнительному заказу:

- Внутренние и внешние модули измерения давления
- ♦ Опция документирующего калибратора
- ♦ Опция многоканального даталоггера
- ◆ Опция коммуникатора HART
- ♦ Опция коммуникатора FOUNDATION Fieldbus H1
- ♦ Опция коммуникатора Profibus PA
- ♦ Кабель с разъемом LEMO для подключения к каналу R2
- ♦ Мягкий кейс для калибратора
- ♦ Чехол для аксессуаров
- ♦ Русифицированное ПО **СМХ** с ключом доступа USB (необходима опция документирующего калибратора)
- ♦ Ручные воздушные и гидравлические насосы с фитингами, трубками, шлангами и кейсами

Для получения дополнительной информации просим обращаться:

OOO «AMETRIX»

Республика Узбекистан, 100094, Ташкент, Мирабадский район, ул. Фергона йули, д. 554/3 Тел.: +998 91 164 66 78 Email: info@ametrix.uz https://ametrix.uz
© 2025 «AMETRIX»

ВП - верхний предел

Д – диапазон

МПИ – межповерочный интервал

¹⁾ При наличии внутреннего барометрического модуля **PB-Ex** любой модуль избыточного давления может измерять как избыточное, так и абсолютное давление.

²⁾ Включая нелинейность, гистерезис, воспроизводимость при температуре 15...35 °C, температурный коэффициент вне 15...35 °C \leq ±0,001 % П/°C; для P10mD / EXT10mD \leq ±0,002 % Д/°C